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1. Introduction. Discontinuous Galerkin (DG) finite element methods for first-order hyperbolic equa-
tions were introduced in the early works of Reed and Hill [24] and Johnson and Pitkdranta [19] with ap-
plication to nonlinear conservation law systems by Cockburn et al. [5, 4, 6]. Fundamental to DG methods
is the use of approximation spaces that are devoid of interelement continuity in both space and time. The
multi-valued representation of the solution at interelement boundaries makes the evaluation of conservation
law fluxes ambiguous thus necessitating the introduction of a numerical fluz function, h(v_,v;n), a vector
function of two (or more) solution states and a geometric normal at interelement boundaries. The needed
numerical flux function can have design origins from exact or approximate solutions of the Riemann problem
of gas dynamics [12, 29, 16]. Alternatively, the numerical flux can be designed from a nonlinear energy anal-
ysis of the DG method for first-order nonlinear conservation laws equipped with a convex entropy extension,
see Barth [1, 2]. This latter energy technique is used in the present analysis. Using the notation introduced
in later consideration of the Cauchy initial-value problem, one obtains from this analysis the following ezact
energy balance equation for the DG finite element method for a spatial domain 2 integrated over N time
slabs
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In this equation U(u) : R™ +~ IR represents a nonnegative convex entropy function which also serves as an
energy for the system and v(u) : R™ + IR™ the entropy variables which symmetrize the conservation law
equations. The exact energy balance is derived using either of two different baseline numerical flux functions:

e Symmetric Mean-Value (SMV) Flux

1 1
hsuv(v-,vi;n) = i(f(v_;n) +f(vy;m)) — B hdyy (v, vi;n)

with
1 ~
hivy (v_,v4;m) = / JAF(O);m)| 1, dO V] .
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¢ Kinetic Symmetric Mean-Value (KSMV) Flux

1 1
hxsvv(v_,vi;n) = §(f(v,;n) +f(vy;n)) - 3 hisyy(V—, vysn)

with
hi o\ v(V_,vi;n) = /0 (lv-n|m®m exp (V(0) -m(v,I)))do [v]E

where (-) denotes an integration in particle velocity-internal energy (v, I) phase space and m(v, I') the vector
of moments as discussed later. Observe that the nonlinear energy balance (1.1) formally bounds the final
solution in terms of initial data. The discontinuous function space leads to energy removal in space and
time proportional to the matrix modulated square of solution jumps across the respective space and time
interfaces, see also the linear system energy analysis of [17] and [1, 2].

In general, the numerical flux functions given here are too complex to permit the calculation of the needed
path integrations in closed form. QOur strategy in this paper is to first develop the framework and theoretical
results given above. We then shift to our main objective, the development of approximate numerical flux
functions, happrox(V_,vy;n), that avoid these complicated path integrations without compromising our
ability to rigorously prove nonlinear stability. This is accomplished by requiring that the approximate
numerical flux formulas are more energy dissipative than the theoretically derived fluxes given above. This
task can be reduced to the satisfaction of either of two algebraic sufficient conditions (derived later)
2t
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We then construct a number of approximate flux functions based on this strategy.

2. Background. Consider the Cauchy initial value problem for a system of m coupled first-order
differential equations in d space coordinates and time which represents a conservation law process. Let
u(z,t) : R x R* = IR™ denote the dependent solution variables and f(u) : R™ ~ RR™*% the flux vector.
The prototype Cauchy problem is then given by

u;+ ffwi =0
(2.1) { u(z,0) = ug(z)

with implied summation on the index 4. Additionally, the system is assumed to possess an scalar entropy
extension. Let U(u) : R™ — IR denote an entropy function and F(u) : R™ + RR? the entropy flux such
that in addition to (2.1) the following inequality holds

(2-2) U,t + Fle <0

with equality for smooth solutions. In symmetrization theory for first-order conservation laws [13, 21, 14,
26, 27], one seeks a mapping u(v) : R™ — IR™ applied to (2.1) so that when transformed

(2.3) uyvy+ ffvv,z,. =0

the matrix u  is symmetric positive definite (SPD) and the matrices f,’v are symmetric. Clearly, if functions
UWV):R™ —» R and Fi(v) : R™ = R can be found so that

(2.4) u' =u,, ()"=7r
then the matrices

(2.5) uy =Uyy, f,=F,,

)

are symmetric. Further, we shall require that ¢/(v) be a differentiable convex function such that

(2.6) lim ) = +o0

v—00 |v|



so that U(u) can be interpreted as a Legendre transform of U(v)

(2.7 Uu) = 51‘1,p {v.-u-Uw)} .

From (2.6), it follows that 3 v* € R™ such that v - u — U(v) achieves a maximum at v*
(2.8) Uu)=v*-u-UW") .

At this maximum u = U (v*) which can be locally inverted to the form v* = v(u). Elimination of v* in
(2.8) yields the simplified duality relationship

(2.9) U(u) =v(u)-u—-U(v(u)) .

Differentiation of this expression

(2.10) Un=vi+ulvy-UywWu=v"

gives an explicit formula for the entropy variables v in terms of derivatives of the entropy function U (u)

(2.11) vIi=U, .

3

Using the mapping relation v(u), a duality pairing for entropy flux components is defined
(2.12) Fi(u) = v(u) - fi(u) — Fi(v(u)) .

Differentiation then yields the flux relation

(2.13) Floo=vit, + () v — Fovu=v'f,

and the fundamental relationship for smooth solutions

(2.14) veo(u,+fL)=U,+FL =0

which is exploited in the nonlinear energy analysis presented here and used previously in Galerkin least-
squares finite element analysis [18], the DG scalar conservation law analysis reviewed in [3], and upwind
finite volume design and analysis [28, 22].

Note that convexity of #/(v) implies positive definiteness of u, and hyperbolicity of (2.1) [10, 21], viz.,
that the linear combination fu(n) = n; f! i has real eigenvalues and a complete set of real-valued eigenvectors

for all nonzero n € R%. This result follows immediately from the identity

(uv) () (ue)'? = (0y) (@) (uy)
sy;rrlm

which shows that f,(n) is similar to a symmetric matrix.

2.1. Kinetic Boltzmann Entropies. Consider the particular case of moment systems derived from
the kinetic Boltzmann equation with Levermore’s closure [20]. Boltzmann’s equation is given by

(215) f(.fL',U,t)’t—FU'V;cf(.Z',U,t) ZC(f)(Z',’U,t) )

with f(z,v,t) a nonnegative density function, v € R? the particle velocity, and C(f) : IR — IR the collision
operator. Moment systems are obtained by integrating in velocity space the Boltzmann equation over a
vector m(v) of linearly independant polynomials in velocity,

(2.16) (m f)+ (imf) o, = (mC(f)) ,

where (1)) denotes the integral of a measurable function v over velocity space. Without further assumption,
the fluxes (v; m f) cannot be expressed as functions of u = {m f). The closure of the system is performed by



6

assuming that the distribution function f has a prescribed form fg = fg(u) given by the minimum entropy
principle
(2.17) H(fg] = min{H[g] | (gm) =u} ,

where H[g] = (gIn g) is Boltzmann’s celebrated H-function. Since H is a convex function the minimization
problem (2.17) is formally equivalent to

(2.18) fe =exp(v-m) ,

where v = v(u) serves as the Lagrange multiplier associated with the constraint {(gm) = u or equivalently
under the closure assumption

(2.19) u = (m exp(v-m)) .

The moment system (2.16) can now be rewritten as

(2.20) u: + f,iz,- =r(u) ,
where
(2.21) fi = (v;m exp(v -m)) .

Observe that using the kinetic Boltzmann structure, we have that

(2.22) U(v) = (fp) = {exp(v - m))

is a suitable conjugate entropy function and that

(2.23) U(u) = {(v(u) - m) exp(v(u) - m) — exp(v(u) - m))

is the corresponding entropy function so that the duality relationship (2.9) holds.

The simplest example of a moment system is obtained by taking m(v) = (1,v, |v|?/2)T corresponding
to mass, momentum, and kinetic energy. In this instance, the collision integral vanishes identically, r = 0,
and (2.20) is the well-known system of Euler equations (5 moments) for a monotonic gas. More complex
systems with 10, 14 or 35 moments have been considered in the literature [20]. In Appendix A, we give the
corresponding Euler equations moment model for vy-law (polytropic) gases that is achieved by increasing the
dimension of the phase space to include internal energy I and utilizing the moments m(v,I) = (1,v, [v|?/2+
INT for 6 = (1/(y—1) —d/2)~!. From (2.22) it is clear' that

(2.24) Uy vy = (m@m exp(v-m))
is SPD, i.e. the following double contraction to a scalar is positive

(2.25) Uvi v, 2:z; = {(m-z)? exp(v-m)) >0 ,[z| #0 .

Furthermore, U yu = L{;’lv is also SPD, hence U is also a convex function of u. Consequently every system

with the considered structure is hyperbolic symmetrizable and has a convex entropy U which is locally
dissipated. This technique provides one of the simplest proofs of convexity for entropy functions associated
with first order nonlinear conservation law systems derivable as moment closures of kinetic Boltzmann-like
equations. In the case of the Euler equations of gas dynamics, the reader should compare this technique with
the somewhat tedious proofs of convexity given in Refs. [14], [15], [11]. Finally, we mention the following
general result for kinetic Boltzmann moment hierarchical systems which is used in later development.

LEMMA 2.1. Generalized Convexity of Boltzmann Moment Conjugate Entropies. Let IN =
{0,1,2,...} denote the set of nonnegative integers. All 2k derivatives of the kinetic Boltzmann moment
conjugate entropy (2.22)

U) = (exp(v - m))

1See lemma, 2.1 for precise details.



are SPD for k € N

%k u
(226) W[Z,Z,...,Z] >0 ) |Z| ;é 0.

2k times

Proof. Successive differentiation of (2.22) 2k times yields the symmetric rank-2k x m tensor

o*u

(2.27) Svak

V)=(m®m®..Rmexp(v-m)) ,

2k times

followed by contraction to a scalar by a nonzero vector z € R™

2k
(2.28) 6—u[z,z, vy ] = {(m - z)
——

Sv2k exp(v - m)) .

2k times

The moment vector m contains m linearly independent polynomials spanning IR™. The condition m(v)-z = 0
for fixed nonzero z and variable v would violate the assumption of linear independence, thus we conclude
that m(v) -z # 0 a.e., namely, except at points of measure zero in the phase space Lebesgue integration. The
term exp(v -m) is also positive for finite argument values in the phase space integration, hence we conclude
for nonnegative powers 2k

(2.29) ((m - 2)* exp(v-m)) >0

and the stated lemma. m

2.2. The Eigenvector Scaling Theorem and Generalized Matrix Functions with Respect to
the Ay Inner Product. Next, we consider an important algebraic property of right symmetrizable systems
which is used later in the implementation of the DG scheme. Simplifying upon the previous notation, let
Ay = uy, 4; = ffu, A; = A; Ay and rewrite (2.3)

(2.30) Agvy+Aiv,, =0 .

The following theorem states a property of the symmetric matrix A; symmetrized via the symmetric positive
definite matrix Ag.

THEOREM 2.2 (Eigenvector Scaling). Let A € R™™"™ be an arbitrary diagonalizable matriz and S the
set of all right symmetrizers:

S={BeR"" | B SPD, AB symmetric}.
Further, let R € R™*™ denote the right eigenvector matriz which diagonalizes A
A =RAR™

with r distinct eigenvalues, A = Diag(M Iy xmys A2Lmaxmas -« - s Aelm,xm,. ). Then for each B € S there
exists a symmetric block diagonal matriz T = Diag(Timixmys Tmaxmas -« - Im,xm, ) that block scales columns
of R, R=RT, such that

B=RR", A=RAR!
which imply that

AB = RAR".

Proof. Omitted, see [1]. m
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This last formula states a congruence relationship since R is not generally orthonormal and A does not
represent the eigenvalues of AB. We shall refer to R as containing “entropy scaled” eigenvectors. Note that
we can consider scalar combinations of A; with the same scaling properties for arbitrary n € IR™, i.e.

(2.31) A(n) =n; A; = Rn)A(n) R (n) , Ay = R(n) R"(n) .

Wavespeeds associated with the system (2.30) and the direction vector n are given by critical values of
the Rayleigh quotient

T i Tp RT T R

(2.32) s il o/ e
§T A€ §-R(n) RT(n) ¢ n-n

which are simply elements of A(n). For use in later developments, it is useful to define a matrix func-
tion f Ao (fl) with respect to the Riemannian matrix A, with critical values of the Rayleigh quotient given
by f(A#),i = 1,...,m. This matrix function takes a particularly simple form as given by the following
proposition:

_ PropoSITION 2.3. Barth [1, 2]. Let Ay denote the SPD right symmetrizer of A such that A = AA,,
Ay = RR”, and A = RAR™'. The generalized matriz function f 1, (A) is symmetric and defined canonically
in terms of entropy scaled eigenvectors as

(2.33) fi,(A) = Rf(MR”
where f(A) is performed componentwise.

Proof. Assume the desired critical values f(A) and the Rayleigh quotient producing them

TrA TRFA)RTe € f4,A :
(2:34) "ﬂ£"=£gg%f5=§$§£€,smemﬂn=Ram¢o.

see also [1, 2]. m

In later sections, the generalized matrix absolute value function |A]| 4, Will be required. Using Proposition
(2.3) stated above

(2.35) |A| 4, = RIAIRT .

_Finally, observe that using these scaled eigenvectors, R, we have the following equivalent representations?
of A and A that are used in later developments:

(2.36) A=Y "NFof , A=) fiof,
=1 i=1
and
(2.37) 144, =D Nl Fi @7
=1

where 7; denotes the i-th column of R.

2These representations should not be confused with the spectral decomposition of a matrix by orthonormal transform.
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3. DG Finite Element Method. Let 2 denote a spatial domain composed of nonoverlapping elements
T, Q=UT;, T;NT; =0, i # j and I™ =]t",¢"T![ the n-th time interval. It is useful to also define the
element set 7 = {T1,T»,..., |7} and edge set £ = {e1,ea,...,eg}. To simplify the exposition, consider a
single variational formulation with weakly enforced intial data. In the DG formulations (see [19, 4, 25] and
references therein), functions are discontinuous in space and time, i.e.

vi={oh|vh e (PuTxIm) )

For ease of exposition, we consider a spatial domain 2 which is either periodic in all space dimensions or
nonperiodic with compactly supported initial data. Consider the first order Cauchy system

{ u,t—l—ffzi =0 inQ

(3.1) u(z,0) = ug(x)

with A(n) = n; 4; and fi(n) =n; A;. The DG scheme with weakly imposed boundary conditions in time is
defined by the following stabilized variational formulation:

Find v* € V" such that for all wh € V*
(3.2) B(v", whpg =0

where
Bv.wina = [ [ (-utv) - wy =) - w ) do
# [ ) @) - we) - u() do
+[ 3 [wlas) ~wia)) - b(v(@-). via)im) et

ecf

where h denotes a numerical flux function. Throughout, we consider numerical fluxes of the form
1 1
(3.3) h(v,vyin) = 5 (f(v—in) + f(v4;n)) - Sh(v, vi;m) -

These fluxes are consistent with the true flux in the sense that f(v;n) = h(v,v;n).

3.1. DG Nonlinear Energy Analysis. Before presenting the nonlinear energy result, we recall some
supporting corollaries concerning entropy function/flux jump identities at space-time slab interfaces. Note
that throughout this section, we utilize the state-space parameterization

v(0) = v(z-) +0[V];*

(similarly across time slab interfaces) for use in state-space path integrations and the interface averaging
operator

(o7 = V@) £ vas)

r- 2

LEMMA 3.1. Interface Jump Identities. Barth [1, 2] Let Z(u), Z(v) : R™ — IR be twice differentiable
functions of their argument satisfying the duality relationship

(3.4) Zu)+ZWV)=Z,v .

The following jump identities hold across interfaces
1
(3.5) (257 — [Z3]5E v(zy) + / (L=t Zvv(V(0) [VIzt d6 =0

(3.6) (215t = [Z2 )5t v(e / 0 [VIzt- 2 v(V(0)) [v]5E df =0 .
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Proof. Omitted, see [1, 2]. m

COROLLARY 3.2. Temporal Space-Time Slab Interface Identity. Barth [1, 2]. Let ty denote
a temporal space-time slab interface. The following entropy function jump identity holds across time slab
interfaces

(37) [ (0 =) i) de+ I 11, o = 0
where
(55) I 0= [ 20-0) Bl Ao(s(o) VI db 0.

COROLLARY 3.3. Spatial Space-Time Slab Interface Identity. Barth [1, 2]. Let z+ denote a
spatial element interface. The following entropy flux jump identity holds across spatial element interfaces

(39) P2 = I [T+ 5 [ (- 20) Wt - o) Wzt a9 =0 .

T— T— 2

Note that in actual numerical calculations, it is desirable to use the variational form given by (3.2) since
integration by parts has been used to insure exact discrete conservation even with inexact numerical quadra-
ture of the various integrals. For analysis purposes, however, it is desirable to use the following equivalent
non-integrated-by-parts formulation:

Find v* € V" such that for all wh € V*
(3.10) B(v", w")pg =0

where

vaG—/n/ ut—}—f’())dmdt

+/w<)mﬁw

/n /e 2t - hi(v(z-),v(z4);n) d dt

eef

/n / F[f(vin)]t drdt

ee&

where h? denotes the flux dissipation term incorporated into the total numerical flux.

THEOREM 3.4. DG Global Entropy Norm Stability (Nonlinear Hyperbolic System). The
variational formulation (3.10) for nonlinear systems of conservation laws with conver entropy extension and
symmetric mean-value fluz dissipation

by (v_,viin) = [Aswv VI, Alsay = / (v (6);m)| 1, df

is entropy norm stable with the following global balance:

(3.11) %2 (”' £, 0+ (0 AEX’"> /UtN dx_/UtO

ee€

with

|A(n)| =/0 2(1-6) (/H(V(H);n)jo - A (1 —0);n)jo) do .
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Proof. Repeated here from [1, 2]. Construct the energy balance for the interval [t2,#Y] = UYZ!I™ by
setting w = v and evaluating the various integrals. Consider the time derivative integral

n+1 n
/ J VT, dt de = / a/ U, dtdz = / ([U]j; —[U]ﬁ,r) do
Im n Q - -

and combine with the jump integral across time slabs. From Corollary 3.2

n 7 gt 1 7
/Q/n vTu’tdtda:+/QvT(t+)[u]t§ dr = /Q [U]ti dx + §||| [v]t{ |||ng 9

When summed over all time slabs, the first term on the right-hand side of this equation vanishes except for
initial and final time slab contributions. Next, consider the spatial operator term and apply the divergence
theorem

(3.12) / / Vit dedt = / / F'. dzdt = / > / —[F(v;n)]5* drdt
nJQ mJ/Q meee -

where F(v;n) = n; Fi(v). Combining all the space terms and applying Corollary 3.3

e = [ 5 / [ + 5 IE ) dodd
1 ~
/ Z / ( / (1— 26) A;(¥(6)) [v]** d0> dz dt
"ecE 0
In summary, collecting all terms and summing over time slabs we have
N-1 it 1 -
Blvvva = 3 ([ W1 do+ GIMTE I, o+ M

n=0

N-1
1 7 n
= [v@)as- [ U@+ T (UME G0+ )
n=0

When written in this form, it becomes clear that a sufficient condition for energy stability is that for all time
intervals I™
(3.13) Ir}...>0

space

which serves as a design condition for the flux dissipation.

Mo = [ [ 0022 (w4 + [ 020 Aw(0) vz 0) dwa
/n / (hd /1( —0) A;(v(9)) [VI3* dt9) dr dt
/n /e‘[ L2 /9A ) [VIZ+ dodadt .

ec&
The choice
1
(3.14) b= by = [ JAEOmw], VI a0
0
yields

o= [ 3 [ 3002 [ (00-0) 2 G@5m) 5, -0 -G @5m) ) a0 Wz dect

"ece e
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= [ 3w [0-0) (B G0ms - 0= 0rm5) 0 dea
= 1 vIZt L1 A(n)| [v]®+ ‘
[X [ 1A dear 2o

This completes the sufficient condition for energy decay in time. B

An important observation to be made concerning (3.13) and energy stability is that any flux dissipation h?
for which

(315) VIt -hiuy < [V]E-1?

is also energy stable with increased energy decay. This observation is used in later sections in designing
simplified flux functions for the DG method.

3.2. DG Nonlinear Energy Analysis for Kinetic Boltzmann Moment Closure Hierarchies.
In this section, we analyze nonlinear energy properties of the discontinuous Galerkin method assuming the
kinetic Boltzmann moment closure structure discussed in Sect. 2.1. Recall that in this framework

(3.16) u = (m exp(v-m)) , f' = (v; m exp(v - m))
with conjugate entropy given by
(3.17) U(Vv) = (exp(v -m)) .

Using these definitions, we briefy examine energy stability of the DG method for these moment closure
hierarchies.

THEOREM 3.5. DG Global Entropy Norm Stability of Kinetic Boltzmann Moment Closure
Hierarchies. The variational formulation (3.10) for nonlinear systems of conservation laws with convex
entropy extension and kinetic Boltzmann moment closure symmetric mean-value flux dissipation

1
hi vy (vo, visn) = [Alksmy VST, |Alksmy = / (Jv-n|m ® m exp(v(6) -m)) dd
0

is entropy norm stable with the following global balance:

1= tn
(318) > (nuv]t;z |||z0,9+2<[v]zt>g,ex,n) + [ v = [ U@)a

n=0 ecé
with

|A(n)| :/0 2(1-10) (;1"'(7(0);11)% - A7 (¥(1 —0);n),ao) dj .

Proof. By making the following generalizations

U(u) = ((v(u) - m) exp(v(u) - m) — exp(v(u) - m))

Ap(v) = (m ® m exp(v - m))

A(v;n) = ((v-n)m® m exp(v - m))

Ai(v;n)AO =((v-n)*m®m exp(v-m)) ,
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we can appeal once again to the space-time slab jump identities stated in lemma 3.1 and corollaries 3.7
and 3.3. Using these definitions and results, the proof of theorem 3.4 applies without alteration up to and
including the equation

Hpace = / nZ / % VIt (hd + /0 1(1 — 20) 4;(%(9)) [v]°* dg) d di
/ / (hd / 1( —0) A;(v(0)) [V]3* de) dz dt

ec

/HZ/E [v]Z* - /9A ) [VIZ* dé dx dt

and the design condition

(3.19) Im,..>0 .

space

In the present case, the choice

(3.20) h? = gy = /0 (Jv-n/m ® m exp(v(8) - m)) df [v]**

is sufficient

nZL_[v];j 2 /01 ((1=0) A* (¥(0)im) 5, - 0 A~ (¥(8)im) 5, ) a9 [VIS* dodt

IIsT;ace = ~/I
e

VIgE -2 /0 (1-6) (A‘F(V(H);n)jo - A~ (w(1 _9);11)%) df [vVI=* da dt
= /HZ/g Vot - [A(n)| [V]S* dzdt >0 .

This completes the sufficient condition for energy decay in time for kinetic Boltzmann moment closure
hierarchies. m

4. Simplified Numerical Flux Formulas for the DG Method. The theoretical results of Sect. 3
provide the framework for constructing, analyzing, and proving energy stability for a number of simplified
numerical flux functions. This task is undertaken in the remainder of this section. We are unaware of
any previous DG analysis for systems (m > 1) of nonlinear conservation laws which rigorously establishes
energy stability for the fluxes considered here. Specifically, we consider symmetric variants of the well
known Lax-Friedrichs flux and the Harten-Lax-van Leer-Einfeldt (HLLE) flux [16, 9] as well as devising new
approximate flux formulas for the discontinuous Galerkin method. For example, the new discrete kinetic flux
(DKSMYV) presented below exploits a property similar to lemma 2.1 in a very elegant way although the basic
construction is similar to the kinetic flux vector splitting method of Despande [8]- Throughout, we use the
notation A = RART as defined earlier with A = diag(Ay, ..., Am) assuming ordered entries Ay < ... < A,
For numerical fluxes such as the SHLLE and SHLLEM flux, we also require that A; and \,, be distinct in
order that the construction be well defined.

e Symmetric Lax-Friedrichs Flux (SLF)

(4.1) hspr(v_,v4sm) = = (E(v_in) + £(va;m)) —

l’\max [u(v)];t

2

N | =

with

Amax = Sup max |\; .
o= sup max N(T(E)



¢ Symmetric Lax-Friedrichs Matrix Flux (SLFM(q))

1
(4.2) hsrrm(q) (V= v45m) = 5 (f(v—;n) + £(v4;m)) - ) thFM(q) (v_,vy;m)

DN | =

with

1 1 x
heppv(2) (Vs Vi 1) = Amax 5 (Ao(vo) + Ao(v4)) [VI,Z

and

Amax = Sup max |\
o= sup max [N(T(E)

and more generally using g-point Gauss-Lobatto integration

thFM(q)(v—ﬂv-i-; = Amax szqAO V(i) [V ]w_

where w; , € R, &, € [0, 1] denote ¢g-point Gauss-Lobatto quadrature weights and locations.

¢ Symmetric Harten-Lax-van Leer-Einfeldt Flux (SHLLE)

1 1
(4.3) hsprie(v-, visn) = 5 (f(vo;n) +£(vy4;n)) — 5 h¢prLp(V-, V4 n)
with
)\max + )\min 2)\max)\min
thLLE(VﬂVH n) = m[f(v; )t - m[“(v)]f .
and

Amax = sup max(0, A\, (¥V(£))) , )\min: inf min(0, A1 (¥(&))) .
0<g<1 <g<1

e Symmetric Harten-Lax-van Leer-Einfeldt Modified Flux (SHLLEM)

1 1

(4.4) hsprem (V- v45n) = ) (f(v—;n) +f(vy;m)) - ) thLLEM(VﬂVH n)
with

)\m x —+ )\min 2)\m x/\min
hdyiem(V-, V4;n) = %[f(v;n)]f - % W)]E - fz 7i(0) ® 74(6) [v]* do

A A A A

max min max min

with

_ 2 max(0, A, (8)) min(0, A (6))
£i(6) = max(0, Ay, () — min(0, Ay (0)))\1( ) max (0, A\, (9)) — min(O,)\i(G))

— | Xi(9)]

and

Amax = OzlﬁlglmaX(O, Am(V(€) 5 Amin = inf min(0,\1(V(€))) -
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¢ Discrete Kinetic Symmetric Mean-Value Flux (DKSMV(q))

1
(f(v_sn) +f(v4;m)) — 5 hixsmvia) (V=; v4; 1)

N =

(4.5) hpksmv(q) (V—; V4in) =

with
1

B csaiy o) (V-5 v45m) = 5 ((jo - nlm @ m exp(v_ - m(v))) + (o1 m © m exp(vy - m(2)))) [V

and more generally using g-point Gauss-Lobatto quadrature
h%KSMV(q) (v_,viin) = Z wig(|v - n|m & m exp(V(&,q) - m(v))) [v]E
i=1

where w; 4 € R, &4 € [0, 1] denote ¢-point Gauss-Lobatto quadrature weights and locations.

Observe that explicit path -integration has been avoided in all these simplified fluxes (except correction
terms in SHLLEM). In addition, we have the following theorem:

THEOREM 4.1. Energy Stability of Simplified Flux Formulas The variational formulation (3.10)
for nonlinear systems of conservation laws utilizing any of the candidate approrimate numerical fluzes (4.1),
(4.2), (4.8), (4-4), (4.5) is energy stable in the sense of Theorem 8.4 or 3.5.

Proofs: Given on a cases-by-case basis.
Symmetric Lax-Friedrichs Flux (SLF):

V] - By (v_, vaim) = V)% / AV (6);m) | 5, [VIZ* db

= | Wz - R @) m) A6 BT (7 0)sm) V2 08

0

IN

sup max | \(¥())] / V* - R(¥(6); n) BT (¥(0); m) [v]>+ do

0<e<1 1<i<m

sup max |\(V(€)) |/ [V]Z+ - Ao(%(8)) [V]2* db

0<¢<1 1<i<m

= sup max |[X\(V(9)| V5T - [u(v)]ZF
0<¢<11<is<m -

[V]z_ hSLF(v—a vi;n) H

Symmetric Lax-Friedrichs Matrix Flux (SLFM(q)):

MIE* by (v veim) = 2 [ 1A O)m, W 0
-/ V2 RO m) IATO)] R (7(0); ) [V @9
< s max VO [V - RO R (50 W2
= s max [\ (¥(O) / W2+ - Ao (v(6)) [VIE* dB

Examining the scalar function

9(0) = VI - AT O)VIE = VI - S A @)
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differentiation yields

9"(6) = S L @O E 97, )]

where the right-hand-side term denotes the rank-4 contraction to a scalar. But for systems derived as
moments of the kinetic Boltmann equation, we have from Sect. 2.1 that

o'tu

W[z,z,z,z] >0, |z] #0 .

Consequently, g(6) is convex for all 6,
9(0) < (1-0)g(0) +69(1) ,

so that

/0 I+ - Ao(9(6)) [v]7* dB <

(05 - Ao(v-) IS + VIZE - Ao(vs) VI3

1
2
1 - -
5 V57 (Ao(vo) + Ao(va) ) VI3
This yields
1 - -
VI3 by (V- viin) < sup max N(TE)| 5 M - (Ao(vo) + o(vs)) M7

0<e<1 i<m 2

=[vI;t - hSLFM(2) (V—,v4in)
which verifies the simplest form of the SLFM flux. More generally, 2k-times differentiation of the function
9(6)

2k+2
(4.6 20(0) = G o (F0) [V 1 [ 1] 2 0

2k+2 times

using the results of Sect. 2.1. Using the theory of ¢-point Gauss-Lobatto numerical quadrature with weights
wi,q € R and locations &; 4 € [0,1] for g(9) € C?772[0, 1], we have

~ ! Cala—1*((q - 2" (20-2) B
(4.7) ;wz,q 9(&iq) /0 9(6)df = (20 1)((2q—2)) 39 (n)>0 (Gauss — Lobatto)

for some 1 € [0,1]. Note that if we had used Gauss-Legendre quadrature instead, the error term would
be negative and the right-hand side inequality reversed. Consequently, using Gauss-Lobatto quadrature for
q>2

/0 WI* - Ao ((0)) [VIZH dB < VITF - S wiyg Ao(¥(Ei)) [VIEH

i=1
and finally
Vs? by (v, vaim) < sup max [N(v(E)] [VI; - / Ap(v(0) [VIg* db
- 0<£<11<z<m
< ooip, 2, N |_[ Lt Z‘*%Ao &) vIz*

0<¢<1 1<i<m

=[v]3* ‘hSLFM(q)(V—aV+a n) m
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Symmetric Harten-Lax-van Leer-Einfeldt Fluxes (SHLLE) and (SHLLEM):

Our first task will be to prove that

[V]J—r 'thV(v—’v-i-; n) < [V]J—r 'thLLEM (V_,v4;n)

followed by
[V]t 'thLLEM(V—av-H n) < [V]t 'thLLE(v—:V-i-;n) .

To do so, consider the symmetrization matrices A and Ay written in the form (2.36)

m m
A=>"NF@f A=) Fiew
=1 i=1

and the following useful 2 x 2 matrix identity for A € R?**? and 4y € R**?

(4.8) Al = max(0, A2) + min(O,/\l)IL1 2 max(0,A2) min(0,\) 7
. Ao T ma,X(O, )\2) — min(O, )\1) Inax(O, )\2) _ min(O, )\1) 0

as can be easily verified by substitution. Generalizing to m X m matrices with \; < Ay < ... < A, and
A1 < Am, we can only represent the extremal values of \; exactly using the (4.8) ansatz whenever \; A\, < 0.
Of equal importance is the somewhat surprising observation that (4.8) is exact for arbitrary m > 2 whenever
AL A > 0, e.g. supersonic flow. Consequently, we have a slightly more complicated identity for general
m > 2
il = max(0, \p,) + min(O,)\l)A 2 max(0, \p) min(0, ;) ~ o= . _
41z, = max (0, Ap,) — min(0, A1) max(0, A) — min(0, A;)

with

max(0, Ay, ) + min(0, A1) 2 max(0, Ay,) min(0, A1)
fi= . Ai — . — |l
max(0, Ay,) — min(0, \p) max(0, Ap,) — min(0, ;)

max(0, \p,) (\; — min(0, A1)) + min(0, A1) (A} — max(0, A,))

= >
max(0, Ay,) — min(0, ;) 20

with the property that f; = 0 whenever A1 A,;, > 0. Next, consider the local path integral (f-dependent)
form of hd,

1

(v vaim) = [ A0 5, s
= /0 ( ;1) — 03(6) A0 (V(9)) — z_ fi(0) 7(0) ® fi(0)> [v]* de
=2
with
_ max(0, A\, (6)) + min(0, A;(6)) 2 max(0, A, (6)) min(0, A1 (6)
1i0) = max(0, A, (9)) — mln(O,)\1 (0)))‘1( ) - max(0, A, (0)) — min(O,)\i(G)) i0)] 20
and
o1(8) = max(0, \p, (¥(0))) + min(0, A1 (¥(9)))
max (0, A\, (¥(0))) — min(0, A\ (¥(9))) ’
02(60) = 2max(0, A\, (V(0))) min(0, A1 (¥(6)))
max(0, A, (V(6))) — min(0, A1 (¥(9)))
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where for brevity \;(6) should be interpreted as A;(v(6)). In addition, we will define the perturbed ratios®
51(0) = (max(0, Am (V(6))) + 6(6)) + (min(0, A1 (v(6))) —¥(6))
(max(0, A (V(6))) + 6(6)) — (min(0, 1 (V(6))) — 7(6)) ’
52(60) = 2(max(0, Am (v(6))) + (6)) (min(0, A1 (v(6))) —(6))
(max(0, A (V(6))) + 6(6)) — (min(0, A1 (v(6))) — ¥(6))

for nonnegative bounded functions §(f) > 0 and v(6) > 0, 8 € [0,1]. Examination of the scalar quantity

11 = / V! - (71(0)AF(0); ) ~ 52(6) Ao (v(6))) [VIE dB
/ VI - (21O AFO);m) - 02(6) Ao(¥(6))) VI* a6

0

= / VIt - R(6) ((a (6) — 01(6))A(6) — (32(6) - az<o>>1mm) RT(9) [v]* df

reveals that IT > 0 since for each component \; of A, i =1,...,m, (omitting the dependence on 6)

2+ max(0, \p,) (max(0, A\p,) + 5 — \;)
((max(0, A\p) + ) — (min(0, A1) — 7)) (max(0, An) — min(0, A1)
24 min(O, )\1) (min(O, /\1) - — )\,)
((max(0, A,) + 6) — (min(0, A1) — 7)) (max(0, A,) — min(0, Ay))

((71 - 01) A - (02 - 02)

+
>0 .

Define infimum and supremum values of min(0, \; ()) and max(0, A, (7)) respectively in the interval 8 € [0,1]
as

Amax = sup max(O,)\m(V(f))) ) Amin = lnf mln(o )‘1( (5)))
0<e<t <¢<t

and set §(6) and €(6) as follows
0(0) = Amax — max(0, A, (¥v(6))) >0, €(f) = min(0, A1 (¥(9))) — Amin >0 .
This renders o1 () and 2(f) now #-independent, i.e.

~ /\max+)\min ~ 2/\max)\min
o) = ————— Oy = —————

)
Amax - )\min /\max - Amin

Consequently, for IT > 0 and f;(0) > 0 we have

Wit By = - [ (0@AF0) >—02<o>fio<v<o))) [v]* df

1 m—1

—[v]~ / Zfz 7 (6) @ 7(0) [T df

<01t [ (OAEm) - 5.0)Aow0)) 11* a6
—[v]* /lmzlfz 7:(0) @ 7(0) [v]T d8

= [v]*- 01/ Aw +d0—02/ A ))[v]tda)

30ur strategy will be to later define the nonnegative function 6(f) as the “gap” between local value of max(0, A\, (#)) and
the supremum value in the interval 6 € [0, 1] and similarly y(#) will represent the gap between the min(0, A1 (8)) and the infimum
value.
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—[v]t- /01 mzl fi(0) 7 (0) ® 7(0) [v] a6
=t (& i — Falu(v)*)
—[v]*- /01 Tg [i(6) 7(0) @ 7(0) [v]* do
= [v]* 'thLLEM
M*- (3 ) - Suw)]t)

= [V]J—r 'thLLE .

IN

which completes the proof for the SHLLE and SHLLEM fluxes. m

A detailed derivation of SHLLEM flux correction terms for the Euler equations of gas dynamics is given in
Sect. 4.2.

Discrete Kinetic Symmetric Mean-Value Flux (DKSMV(q)):
We begin with the definition of the KSMV flux

1
(It By = 1+ [ (o nlm @ m exp (¥(6) - m(0)) [v]* a
1

=[v]t- <|v ‘n|m®m /0 exp (v(6) - m(v)) d9> [v]*

= {|v-n|([v]F - m)? 1 X VG)-m(v))d9>

= (ol (01 -m)? [ e (1 .
Considering the scalar function

9(0) = exp (V(6) - m(v))

followed by 2k-times differentiation

g®¥(8) = ([v]* - m(v))** exp (V(6) - m(v)) >0 .

Appealing once more to the theory of g-point Gauss-Lobatto numerical quadrature with weights w; , € IR
and locations &, € [0,1] for g(6) € C?772[0,1], we have

a(g—1)*((q - 2))" 420D
(2¢ - 1)((2¢ - 2)1)°

for some 7 € [0,1]. Consequently, using Gauss-Lobatto quadrature for ¢ > 2

@9) Y wiagli) - /0 9(8) do = () >0  (Gauss — Lobatto)

V2 - hismy (V- vasn) = [V /0 (lv-n|m® m exp(¥(9) - m(v))) [v]Ldo

g

<V - D wig{lv - n|m@ m exp(¥(&i,q) - m(v))) V]
i=1

= [v];* 'h]dDKSMV(q) u

In Appendix B, we evaluate the closed form integration for z € IR?

(lv-n|m®m exp(V(&i,4) - m(v)))

for a «y-law polytropic gas using the construction given in Appendix A.
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4.1. Symmetric Lax-Friedrichs Versus SHLLE Fluxes. Cockburn et al. [5, 4, 6] have shown
impressive results using the Lax-Friedrichs flux in conserved variable form. Even so, there is strong motivation
to consider alternatives such as the SHLLE and DKSMYV fluxes. One shortcoming of the Lax-Friedrichs (LF)
flux and symmetric Lax-Friedrichs (SLF) flux becomes apparent when using these fluxes in the imposition
of weak (flux) boundary conditions for supersonic flow. Consider for example the simplest case of linearized
flow so that the standard Lax-Friedrichs flux reduces to

1 1
hup(u_,uyim) = S A (U +up) = e[l

1 1
—1 -1
= ER (A+)\maxImxm) R u_+ ER (A_)\max-[mxm) R uy
componentwise nonnegative componentwise nonpositive

where A € IR™*™ represents the linearized flux Jacobian, R € IR™>*™ the matrix of right eigenvectors that
diagonalize A4, i.e. A = RAR™!, and Apax = maxi<i<m |Asi|. Consequently, when all characteristic speeds
are of one sign, e.g. supersonic flow, the Lax-Friedrichs flux does not yield a correct “upwind” domain of
dependence. This can be significant when the Lax-Friedrichs flux is used in the imposition of weak flux
boundary conditions. For supersonic outflow, no boundary data should be strongly imposed or when weakly
imposed it should not enter into the calculation of the outflow boundary flux. This does not occur when the
Lax-Friedrichs flux is used for supersonic flow. Consequently, incorrectly posed outflow data can contaminate
solutions yielding spurious outflow layers in numerical solutions. This effect can be very significant when the
Lax-Friedrichs flux is used in many-wave extended systems such as magnetohydrodynamics. Contrast this

Lax-Friedrichs SHLLE

X X

F1G. 4.1. Subsonic flow Riemann problem, x —t plane. Dissipated wave region (shaded region) for the Laz-Friedrichs and
HLLE numerical fluzes.

Lax-Friedrichs

X X
F1G. 4.2. Supersonic flow Riemann problem, x — t plane. Dissipated wave region (shaded region) for the Laz-Friedrichs
and HLLE numerical fluzes.
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with the SHLLE flux depicted in Figs. 4.1 and 4.2, unlike the Lax-Friedrichs flux, the HLLE and SHLLE
fluxes yield correct domains of dependence in supersonic flow since the envelope of characteristic speeds is
accurately modeled.

4.2. The SHLLEM Flux. The SHLLEM flux modifies the SHLLE flux by the correction terms

m—1 1
(4.10) hsuem = hsaiee — ) / fi(6) 7:(6) ® 7:(0) [v]£ d6 .
i=2 70

Since f;(8) > 0, each correction term in the sum is anti-dissipative, i.e.

(4.11) [v]T - hspriem — [V]T - hsprre = — Z_ /0 £:(6) (7:(6) - [v]F)2do <0 .

For the 2D Euler equations, we consider corrections to the following waves as given in [1]

Shear Wave: M\ =u-n

0
(412) fg = pT n; 5 7~‘2 dv = %d(ngul — TL1U2) y
—n V

nau1 — N1uU2

0
na (n2u1 - n1u2)
—Nnq (’I’LQ'Uq - TL1U2)
%(nzul - n1U2)2

fQ(V) ®7’~2(V) dv = pd

Approximating the energy of the shear correction term while maintaining an energy stable inequality
0
+ ! ~ ~ + . — + v+ N9 (TLQ’LLl — n1u2)
W' [ 2200 7a(0) @ 7a(0) VI B > inf (p(7(O) )M [ d
0 SES

v_ —n (n2u1 - n1u2)
%(nﬂll - n1U2)2

0
=1 - ot (7€) fa(e)) | 12 (ot ),

%(nzul - n1u2)2

thus verifying energy stability of the following shear wave correction term for use in the SHLLEM flux

- (nzul - n1U2)
! 5("2“1 — n1uy)

0 +
1
(4.13) /0 12O 72(6) 9 F20) VE a0 int (p(¥(E) fo (&f))”i(’““l ~ i) .

2

Contact Wave: A3 =u-n

1
. POY-1) [ w . P
(4.14) Fg =4/ ——— , Tsdv=—,———ds(v)
: —1
|u1|22/2 (v =1)
1
Ra(v) @fs(v)dv = =2 | " | ds(v)
2
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where s(v) denotes the thermodynamic entropy s = In(p/p”). Application of the basic Cauchy-Schwarz
inequality

(4.15) / PEdes (f 1 d§)2

suggests an energy stable approximation of the contact wave energy correction

vE- / f3(6) 73(0) ® 73(0) [v]E do > (/01 V£3(0) 75 (6) - [v]E d‘9>2

s (st Vo) ([ o)
-t (e Vi@ R) (o)’

This in turn motivates the following energy stable approximation

1
RORO @ RO 0> - (it VIO RE) M [T W] s
/ <0<§<1 ) /v Us
" \upy2

Equating terms with the previous expression, we would like to determine a numerical integration rule such
that

(4.16) e [ m ] asw) = 2 (o)’
/2

2 T
Assuming the entropy variables as given in [1], v = [—Wil + ﬁ - %, T —%} , exact energy equality is

achieved via the formula

1 1
ol S M |
wt- [ |1|22/2 s M| e | de) = (o)
u ((un)?/2

where (u;)T denotes the arithmetic average operator and ((u)™ denotes the geometric mean operator
(componentwise) given two states. Thus, we obtain the following energy stable correction term for the
contact wave family for use in the HLLEM flux

1
2 m +
(4.17) / F2(8) 7(8) ® 75(6) [v]* daw—}y (O;ggyp(v(f)f?(s))) H+ sV
o ()22

5. Concluding Remarks. The analysis of this paper confirms energy stability for several numerical
flux functions that are of practical merit when used in computational fluid dynamics computations. Even
so, the theoretical framework developed here applies more generally and has application to many nonlinear
conservation law systems with entropy extensions that are not explicitly discussed here. In these settings,
the analysis presented may be invaluable because there may not be the large body of numerical methods
developed before hand to guide the development of new numerical fluxes, discretization, and stabilization.
Our general goal is to pursue these new problem areas in forthcoming work.
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Appendix A. The exp(v - m(v,I)) Boltzmann Moment Structure for a y-Law Equation of
State. For a +y-law (polytropic) gas, one has with suitable nodimensionalization

p=(y—1pe, T=(y—1)e.

Following Perthame [23], we consider the following Maxwellian in R? for a y-law gas:

. —_ P —(u-vP/2+1%)/T
(A1) fp,u, T5v,1I) = a(v,d) T4/2+1/3 €
with
1
d=— —d
y—1 2
and

a('y,d)z/ e*‘”lg/zdv-/ e~ I'drl .
R4 R+

Using this particular form, Perthame shows that the Euler equations for a v-law gas are obtained as the
following moments

1
(A.2) m(v,I) = v
|v[2/2 + I°

so that
w=@mp, f=@mp, G=[ [ Qi

The nonobvious energy moment |v|? /24 I was devised by Perthame rather than the more standard moment
[v|2/2 + I (see for example [7, 8]) in order that a classical Boltzmann entropy H(f) = fIn f be obtained.

Let us now verify that this choice of moments yields an exponential form for the conjugate entropy
function of the form

U(v) = (f) = (exp(v - m(v, I))) .

Inserting the expression for § into the temperature term appearing in the Maxwellian yields

o Ty L P —(lu—v?/2+1%)/T
(A.3) f(P;U,TWaI)—mme

and compare this with the expression exp(v - m) obtained using the entropy function*

ps
U(u) = Constant — ——
(ry=1
with
_ (=1
s=In = +(y-1) lnoz—l—T1
so that
2 2
UT _7i1u_ % In (a:m/zv;l)) - %
vV = u = = = =
) _Tl _Tl
T

4The choice of 1/(y — 1) scaling of the entropy function comes from our desire to match the p/T1/(*=1) term appearing in
Perthame’s Maxwellian. In addition, we translate the usual thermodynamic entropy by a constant depending only on a fixed
v since any affine function of thermodynamic entropy symmetrizes the compressible Euler and Navier-Stokes equations.
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and finally

p —(lu=v|?/241°)/T

exp(v-m(v,I)) = —ro—y e

Comparing with (A.3), we obtain the exponential form for the conjugate entropy function
U) = (f) = (exp(v - m(v, I))).
Moreover an obvious computation shows that
U(u) = (v-m exp(v-m) — exp(v - m)),
so that we have the duality relationship
U(u) +U(u) = v(u) -u

as desired.

Appendix B. Calculation of (|v-n|m ® m exp(v-m)) for a y-Law Equation of State. Consider
the DKSMYV flux

1
(f(v—;n) +f(v4;n)) — 3 hi snv) (V- V45 1)

DN | =

(B.1) hpksmy(q) (V-, V4;n) =
with
q
hi sy (g (Vo> v4in) = Z wig(|v - n|m @ m exp(¥(& 4) - m(v))) [v]*
=1

where w; 4 € R, & 4 € [0, 1] denote g-point Gauss-Lobatto quadrature weights and locations. Computation-
ally, the most difficult task is the phase space integration of the quantity

(lv-n|m & m exp(V(&i,g) - m(v))) -

To evaluate this quantity in three space dimensions, first construct an orthonormal basis [n,ntt, nt2] in R?
for a given normal n. The particular choice of n't,n'2 is not significant. Using this basis, compute the
rotated velocity components,

Un ni N9 ns Ul
i I

u, | = nil n%_1 n:j_l Uo

U, ny? ny? n3? u3

so that u, represents the normal velocity component and v ,,u , the two perpendicular velocity components.
Assume moments m(v, I) as described in Appendix A for a y-law gas. Our desired integral is then evaluated
most easily in locally rotated coordinates so that

1 N N mi1r Miz Maz mia mas] [1
nonytong” M2 Ma3 Ma2g Mas nj nf nf
(Jlv-n| m@m exp(v-m)) = ny ny' ny? M3z M34 M3 nit nyt ngt
1 1 1
ng nz' ng? Ma4 M4y ni? ny? ng?
1 sym mss

After some tedious calculus, we obtain

¢ N 2T uZ
= n€er _— — 3
mi1 PUn € \/ﬁ P T exp o

o n_ 2T oot
mlg—p(un+T)erf<\/ﬁ>+pun 7rexp( 5T
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m wnu - erf [ —2 ) 4 pu 2Te up,
= n —eX _—

13 =27 1, 5T puUL, p P oT

Up 2T ui
mi4 = PpURU L, erf ﬁ -+ pUL, 7 exp —2_
1 U

M1s = Py —Dlul2+2 T) erf( n)

15.= pun (7= Dluf? + 2T) 50— =

4 (= Dluf? + (7+1)T) i 1_1

Moy = puy ( u + 3T) exf

+T)erf + 2T Un
= T n JR _—
ma3 = puLl ’LL e \/ﬁ puUnul , . exp oT

NG
=]
N——
n
=
3

. 1 Up
Mas = p ((,y — DuZ|ul® + 2fyT2 + 5y = 3)ulT + (y = 1)(u], + uL)T) 57 =1) erf ( )
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mas = s, (= Dlul? +2(2y = 17) gt (S
+pusy (7= Dluf + 3y - DT) ﬁ g P G%)

mss = pun (= 1Pl + 4121 = DT 442y = D03 = DIuPT) Lyt (22)

4 (7= DAl 4 ET) + By = D+ DT 42007 = D = DT g2 oo (- 52

with |u|? = uf +uj +u3 = uj +ui +u? . Formulations in 2-D and 1-D are derived by zeroing corresponding
perpendicular velocity components and striking out corresponding rows and columns of the matrix.
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